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We study two planar square lattice Heisenberg models with explicit dimerization or quadrumerization of the
couplings in the form of ladder and plaquette arrangements. We investigate the quantum critical points of those
models by means of �stochastic series expansion� quantum Monte Carlo simulations as a function of the
coupling ratio �=J� /J. The critical point of the order-disorder quantum phase transition in the ladder model is
determined as �c=1.9096�2� improving on previous studies. For the plaquette model, we obtain
�c=1.8230�2� establishing a first benchmark for this model from quantum Monte Carlo simulations. Based on
those values, we give further convincing evidence that the models are in the three-dimensional classical
Heisenberg universality class. The results of this contribution shall be useful as references for future investi-
gations on planar Heisenberg models such as concerning the influence of nonmagnetic impurities at the
quantum critical point.
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I. INTRODUCTION

The study of quantum effects in magnetism is an ongoing
and fascinating part of physics research.1,2 Within this area,
the low-dimensional S=1 /2 Heisenberg antiferromagnet
plays an eminent role. This is partly because it correctly
describes aspects of cuprate superconductors and is thus
implemented in nature. Second, the Heisenberg model and
variations have seen a lot of investigations as toy models
where quantum fluctuations lead to unexpectedly rich and
exotic ground states �such as valence bond solids and va-
lence bond liquids�. Recent experiments in optical lattices3

further provide the perspective to directly implement those
models in a pure environment thereby enabling a direct ex-
perimental access and comparison between theory and mea-
surements.

In two-dimensional �2D� Heisenberg models, the Mermin-
Wagner theorem forbids phase transitions to occur at T�0,
yet quantum fluctuations may lead to a transition between
ground states, for example from an ordered Néel to a disor-
dered state at zero temperature. Such transitions are termed
quantum phase transitions.4,5 One way in which quantum
fluctuations can destroy order is for example provided via
frustration of bonds �next-nearest-neighbor couplings� or the
inclusion of four-site interactions.6

In a second mechanism, competition between locally
varying nearest-neighbor bonds of the same kind has been
identified to cause quantum phase transitions, for example by
favoring the formation of spin singlets. An important class of
models in which the latter mechanism is at work are the
so-called dimerized Heisenberg models �where we also use
the term for extended models with quadrumerization, etc.�,
where the competition among couplings is explicitly intro-
duced in a geometric manner. Apart from their relevance as
simple models for quantum phase transitions, such systems
have been in recent focus in connection with Bose-Einstein
condensation of magnons.7 A prominent example of dimer-
ized models is the S=1 /2 bilayer Heisenberg system8–12

which consists of two L�L layers, where the interlayer cou-
pling J� can be different from the intralayer coupling J �both
couplings antiferromagnetic�. Competition between J� and J
can drive a quantum phase transition.

Due to progress and availability of unbiased and efficient
methodological schemes,13 some numerical contributions in
the literature were lately pushing results on those bilayer
systems to unprecedented accuracy for quantum models, al-
lowing for very detailed studies in the quantum critical re-
gime. Following the high-precision study on two bilayer sys-
tems by Wang et al.,14 Höglund and Sandvik15 could for
example report on anomalous response of nonmagnetic im-
purities, for which an accurate knowledge of the quantum
critical point was a prerequisite. The overall interest on such
impurity-based questions is growing,16–18 therefore asking
for the general availability of more detailed data also in other
systems.

While the level of accuracy has reached a very high qual-
ity for bilayer systems, this is not equally the case for planar
geometries. After the seminal simulation of the CaVO lattice
by Troyer et al.,19 only the coupled ladder model was con-
sidered in more detail20 using quantum Monte Carlo �QMC�
studies. A main result of these investigations was the confir-
mation of the critical exponents predicted by field theory.21,22

In an effort to systematically improve and extend these
results to other planar Heisenberg models, we have recently
started with a contribution23 reporting on peculiar and non-
universal features of a particular dimerized model called the
J−J� or staggered model.24–28 In Ref. 23, our presentation is
based on a detailed scaling analysis at criticality and com-
parison between several dimerized models including bilayer
and planar geometries. As a prerequisite to this comparison,
we have also presented new but preliminary results on the
ladder and plaquette Heisenberg model without showing any
details of our numerical data nor its data analysis. An in-
depth study of these models on its own is, however, useful
for several reasons. Apart from the aforementioned motiva-
tion concerning impurities, new benchmark results shall be
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useful for thermodynamic considerations in the quantum
critical regime and for further developing and testing novel
algorithms and numerical techniques.

In order to close this existing gap, we consider in this
paper the critical points of the ladder and plaquette models
defined by the Hamiltonian

H = J�
�i,j�

SiS j + J� �
�i, j��

SiS j . �1�

Here, Si= �1 /2���x ,�y ,�z� denotes the usual spin-1/2 opera-
tor at lattice site i, and J and J� the antiferromagnetic cou-
pling constants defined on bonds �i , j� and �i , j��, respec-
tively. The arrangements of the bonds on the square lattice of
size L in both directions can be seen in Fig. 1. Let us define
the quantity �=J� /J as the ratio of the two competing cou-
plings. For ���c�1 the systems will be disordered and
gaped due to formation of spin singlets. For �l����c the
systems possess Néel order and there is no gap. Here �l is
some lower boundary at which a second transition can take

place. In this regard, it is interesting to note that long-range
Néel order even for �=1 was only recently established
rigorously.29 With �c we denote the quantum critical point.
Throughout this work we fix J=1 and study the transition
from the Néel to a disordered state, when � �or J�� is
increased.30

Let us first summarize some previous work on the subject.
Early contributions on the ladder model were done by Singh
et al.,25 who used series expansions to access the critical
point. Numerically oriented work followed from Katoh and
Imada31 and was later improved by Matsumoto et al.20 in a
detailed QMC study, which had its major objective in study-
ing the S=1 case. For S=1 /2, to our knowledge the best
known value for the critical coupling is taken from that paper
as �c=1.9107�2� �which is the inverse of 0.523 37�3��, to-
gether with an estimate of the critical exponent �=0.71�3�.
The latter result is often used or quoted in favor of O�3�
universality based on field theory. The S=1 /2 ladder model
has been further investigated in three dimensions �3D� in
connection with field-induced phenomena and Bose conden-
sation of magnons.32,33 The effects of random site dilution in
the dimerized phase were also studied.34 Quite generally, the
coupled ladder model is nowadays often used as a paradig-
matic model in discussions of quantum phase transitions and
quantum magnetism.2,35

Less is known about the plaquette model, which was stud-
ied before mainly analytically or with series expansions.36–38

A recent study on the quadrumerized Shastry-Sutherland
model,39 using mainly exact diagonalization methods, also
contains a �hidden� QMC estimate of the critical coupling
�c�1.82 for the pure plaquette model. Additionally, the
plaquettized model returned into focus using a numerical
scheme called contractor renormalization �CORE� method.40

Still, it lacks a detailed QMC investigation as presented in
this paper.

The reason to reconsider the ladder model is threefold.
First, we like to test our algorithm and approach on known
models. Our second motivation is to complement the de-
scription of the phase transition in the ladder model beyond
to what was done earlier. This includes the extension to dif-
ferent critical quantities, inclusion of corrections in the
finite-size scaling analysis, and calculation of critical expo-
nents not considered before. Our aim is also to make the
value of � more accurate for definite interpretation in favor
of O�3� universality. Lastly, a major objective is to derive
results which we partly presented in Ref. 23, as the dimer-
ized ladder model is so similar to the staggered model.

We organize our paper as follows. In Sec. II we shortly
present our implementation of the QMC method and data-
analysis approaches. Standard observables used to detect the
critical point are defined and discussed. A detailed presenta-
tion of our numerical data with a focus on the critical point is
given in Sec. III. Section IV contains a finite-size scaling
analysis of the critical exponents and a summary is given in
Sec. V.

II. SIMULATION METHODS AND FINITE-SIZE SCALING

A. Quantum Monte Carlo simulations

In this work, we report on simulations based on our
implementation of the stochastic series-expansion �SSE�

J �

J

J �

J

(b)

(a)

FIG. 1. �Color online� �a� Visualization of the ladder model on
the two-dimensional square lattice. The quantum spin �S=1 /2� de-
grees of freedom live on a square lattice with different nearest-
neighbor couplings J and J� �thin and thick bonds�. The lattice
bonds corresponding to couplings J� are denoted as �i , j�� in the
Hamiltonian. �b� Similar for the plaquette model, favoring quadru-
mer formation. Both systems are studied using periodic boundary
conditions.
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method by Sandvik and Kurkijärvi.41 Due to its discrete na-
ture, this QMC scheme is a convenient and powerful method
to implement. The central idea of SSE is to sample the series
expansion of the partition function

Z = tr�exp�− �H�� = �
�

�
n

�− ��n��	Hn	��
n!

, �2�

with n being the expansion order, 	�� a basis state of the spin
space, and � the inverse temperature. While the original al-
gorithm used local Metropolis-type updates, major improve-
ments were achieved by introducing cluster or operator loop
updates.42 Our own implementation is based on the directed
loop43 generalization together with additional ideas described
by Alet et al.44 The recent incorporation of the Wang-Landau
method45 into the SSE scheme46 allows the use of multihis-
togram techniques on QMC data47,48 which is useful to ob-
tain unbiased continuous curves through data points, a fea-
ture which we use partly in our data analysis.

In order to access zero-temperature properties of the spin
system, all simulations must be performed at sufficiently
large � so that quantities of interest assume their ground-
state value. In this contribution this is done in a two-stage
procedure. For a chosen lattice size, we check explicit con-
vergence of observables by a � doubling approach, i.e., we
double � until quantities agree within error bars. Once a
suitable � is fixed for the chosen size, standard aspect ratio
scaling is employed. Hence, we fix � at lattice size L accord-
ing to �L=sL, with s being the scale determined in the dou-
bling scheme.49 Figure 2 shows a particular convergence test
for a medium sized lattice �L=32� indicating ground-state
convergence for �	100 for two exemplary observables de-
fined below. This concrete test was performed close to the
critical point for the plaquette model using 4�105 sweeps.
The inverse temperatures used in this study are therefore
rather large compared to some earlier studies.

B. Observables

In order to determine the quantum critical point, we look
at well-known observables. Next to trivial quantities such as

the average energy per site e, we consider the staggered mag-
netization defined by

ms
z =

1

N
�

i

N

Si
z�− 1�xi+yi, �3�

where the sum runs over all N=L2 lattice sites, together with
the usual Binder parameters

Q1 =
��ms

z�2�
�	ms

z	�2 , �4�

Q2 =
��ms

z�4�
��ms

z�2�2 . �5�

These parameters are dimensionless and they possess the
property to cross at the quantum critical point. Note that the
staggered magnetization and the Binder parameters can be
determined quite efficiently by averaging over spin represen-
tations in the operator direction43 of the SSE representation.
The brackets �¯� therefore signify �ms

z�
��ms
z�op�conf.

Second, we study the correlation length 
 of the system.
We employ the standard second-moment approach, which
uses the structure factors S�q� defined by

S�q� =
1

N
�
i,j

exp�− iq�ri − r j���Si
zSj

z� , �6�

with q being a wave vector in Fourier space and ri the vector
pointing to site i on the real-space lattice. This quantity can
be efficiently obtained for arbitrary q during the diagonal
update, as

S�q� =� 1

Nn
��

p

n−1

mq�p�mq�p��� , �7�

where the index p is running over the operator sequence
having n nonunit operators. The quantities mq�p� are defined
as mq�p�=�i

NSi
z�p��cos�qri�−i sin�qri�� at SSE operator slice

p, and mq�p�� denotes its complex conjugate. The correlation
length is then estimated by


y =
Ly

2�
� S��,��

S��,� + 2�/Ly�
− 1. �8�

For the anisotropic ladder model we expect 
x�
y on the
square lattice. We found it most useful to look at the corre-
lation length in the y direction of the system. This choice is
arbitrary but somehow motivated from Ref. 23 because 
y
showed good scaling for the staggered Heisenberg model.
From standard finite-size scaling theory we expect the quan-
tity 
y /L to cross for different lattice sizes at the quantum
critical point. In case of the symmetric plaquette model, an
improved estimate for the spatial correlation length can be
obtained by taking


 =
1

2
�
x + 
y� . �9�

Lastly, we consider the spin stiffness �s given by50

β

�m
z s�,

Q
2

10010

2.28

2.26

2.24

2.22

2.20

2.18

2.16

2.14

2.12

2.10

FIG. 2. �Color online� Convergence test for the plaquette model
at a system size L=32 and coupling �=1.82 displaying the two
quantities Q2 �upper curve� and �	ms

z	� �lower curve�. Ground-state
properties are sampled for �	100. The staggered magnetization
was multiplied by 25 for convenience.
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�s =
3

4�
�wx

2 + wy
2� , �10�

with wx, wy being winding numbers defined by

w = �N
+ − N

−�/L � = x,y� . �11�

The symbols N
+ and N

− represent the number of operators of
type Si

+Sj
− and Si

−Sj
+ along the  direction in the SSE configu-

ration. The spin stiffness measures the response in free en-
ergy upon a boundary twist on the staggered magnetization
�the order-parameter field �� and is also called superfluid
density in other contexts. At a quantum critical point in a 2D
system it is expected to scale as �s�Ld−2−z, where z is the
dynamical critical exponent.14,51

C. Finite-size scaling

In this paper, we employ a variety of finite-size scaling
methods to determine various critical quantities from the
quantum critical point to the critical exponents. To this end,
we make use of the standard scaling ansatz in the vicinity of
the critical point

OL�t� = L/�gO�tL1/�� , �12�

where � is the critical exponent of the correlation length,  is
the critical exponent of the quantity O, gO�x� is the scaling
function, t is the reduced coupling defined by t= ��−�c� /�c,
and L the lattice size.

Analysis to Eq. �12� was performed in the previous QMC
study on the ladder model in Ref. 20. Here, we would like to
go one step further and take leading corrections to scaling
into account. Apart from higher order terms O�1 /L2�, the
renormalization group �RG� then predicts a scaling of the
form

OL�t� = L/��gO�tL1/�� + L−�g��tL1/��� , �13�

where � is the leading correction exponent and g��x� is an-
other scaling function. Writing g��x�=c�x�gO�x�, this be-
comes

OL�t� = L/��1 + c�x�L−��gO�x� , �14�

with x= tL1/� and a coefficient c�x� depending on x. To zeroth
order, and for x small we may set c�x��c=const and arrive
at the usually employed form

OL�t� = L/��1 + cL−��gO�x� . �15�

We consider Eq. �15� as our primary ansatz in the data analy-
sis.

Note that in the literature, another ansatz in form of

OL�t� = L/��1 + cL−��gO�tL1/� + dL−�/�� �16�

has been discussed which represents an effective approxima-
tion to Eq. �13� in the vicinity of the quantum critical
point.14,52 Here, � and � represent effective corrections, ap-
proximating the correct RG behavior. In Ref. 14, which is
closely related to the present paper, the authors employed Eq.
�16� and obtained results in excellent agreement with the
expectations. Here, we will primarily employ Eq. �15� and in

some instances compare our result to Eq. �16�. In any case,
we use this procedure mainly to obtain the critical coupling
�c.

53 We emphasize that final results of critical exponents
will be given as obtained from ordinary scaling methods at
the critical point �x=0�, which are described in Sec. IV.

Data analysis according to Eq. �15� is known as “data
collapsing.” In practice, this can often be achieved by Taylor
expanding the scaling function gO�x� for x→0 into a poly-
nomial of the form

gO�x� = g0 + g1x + g2x2 + ¯ . �17�

Using this ansatz, relation �12� is turned into

OL�t� = L/��g0 + L1/�g1t + L2/�g2t2 + ¯� , �18�

where all free parameters can then be determined by a non-
linear fit of the measured data. The generalization to Eq. �15�
is obvious.

We have recently implemented a related method, which
does not need to make use of Taylor expanding the function
gO�x�.54 Using multihistogram techniques, it is possible to
directly perform a collapse of the data by minimizing the
weight function

�O
2 = �

xmin

xmax

dx�ÔL
2

—

�x� − ÔL

—2

�x�� , �19�

where ÔL�x�=OL�t� / �L/��1+cL−��� and x= tL1/�. With

ÔL

—
�x�
�LÔL�x� /nL, we denote the average over nL lattice

sizes. For the quantities Q1, Q2, 
y /L, 
 /L, and �sL we have
 /�=0.

III. SIMULATION RESULTS AND THE CRITICAL POINT

We performed various simulations on the ladder and
plaquette model for lattice sizes specified in Table I employ-
ing the methods described in Sec. II. All runs were done
using periodic boundary conditions. The sample size of mea-
sured data is of the order of 4�105 for the plaquette model
and 8�105 in case of the ladder model, giving an indication
that the ladder model is somewhat harder to simulate. We
typically performed 1�104 sweeps for equilibration. Mea-
surements were taken every sweep and each sweep con-
structed as many loops as necessary in order to visit 2n ver-
tices in the SSE operator expansion on average. A summary
of the raw data obtained from the simulations is displayed in
Fig. 3, where we show the spin stiffness �s, the correlation
length 
, and the Binder parameter Q2. The left and right
panels in Fig. 3 distinguish results for the ladder and
plaquette model, respectively. Evidently, all quantities cross
close to an apparent quantum critical point justifying the

TABLE I. Summary of lattice sizes L studied in the
simulations.

Model Lattice sizes L

Ladder 8,10,12,14,16,20,24,28,32,36,40,52,64

Plaquette 8,10,12,16,20,24,28,32,36,40,44,48,56,72
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scaling assumptions for the observables described above.
However, clear finite-size corrections can be observed for
both cases as the crossing points for small lattice sizes show
large displacements. This behavior is expected and in accor-
dance to the data published in Ref. 14. Our hope is that those
corrections can be described by the correction terms included
in the scaling ansatz �15� �or �16��. Using the raw data, we
will now try to extract a precise estimate of the quantum
critical point. To reach this aim, we will follow a two-stage
process, starting with an analysis of the crossing points fol-
lowed by a finite-size scaling investigation using the collaps-
ing technique.

This will in principle also give us estimates of critical
exponents but we leave this issue for a more detailed inves-

tigation in Sec. IV using ordinary and well-established meth-
ods.

A. Estimation of the critical point from curve crossings

Finite-size scaling analysis with scaling functions involv-
ing many free parameters is a tedious and difficult task due
to well known problems of multidimensional nonlinear mini-
mization. Before we attempt to perform a full finite-size scal-
ing study using Eq. �15�, we would therefore like to set
bounds on the possible values of the critical coupling �c. To
this end, a convenient approach consists in looking at the
scaling of crossing points of curves at L1 and L2 �where L2
=2L1� for different values of L1. The crossing points are

α

ρ
s
L

1.931.921.911.901.89

1.6

1.4

1.2

1.0

0.8

α

ρ
s
L

1.861.851.841.831.821.811.801.79

1.8

1.6

1.4

1.2

1.0

0.8

α

ξ y
/

L

1.931.921.911.901.89

0.75

0.70

0.65

0.60

0.55

0.50

α

ξ
/

L

1.861.851.841.831.821.811.801.79

1.0

0.9

0.8

0.7

0.6

0.5

α

Q
2

1.931.921.911.901.89

2.45

2.40

2.35

2.30

2.25

2.20

2.15

α

Q
2

1.861.851.841.831.821.811.801.79

2.45

2.40

2.35

2.30

2.25

2.20

2.15

(b)

(a)

(c)

(d)

(f)

(e)

FIG. 3. Behavior of different observables close to the quantum critical points. Different curves correspond to different system sizes �see
Table I�, where larger slope means larger system size. The left column displays �a� the spin stiffness multiplied by the system size L, �b� the
correlation length 
y divided by system size L, and �c� the Binder parameter Q2 for the ladder model. The plots ��d�–�f�� in the right column
show the same quantities obtained for the plaquette model.
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easily obtained using either the multihistogram method or
fitting data at L1 and L2 to the simple scaling ansatz in Eq.
�12� �using polynomial interpolation�. Performing this proce-
dure on the various observables of Fig. 3 �and Q1� yields the
plots of Fig. 4, which show convergence of the intersection
points to the quantum critical point in the thermodynamic
limit. The plots are presented with an x axis as 1 /L since we
do not know the correct scaling a priori. The qualitative
behavior of the different quantities toward the critical point
is rather similar to Ref. 14. We find that for both models the
spin stiffness has the least finite-size corrections, followed by
the correlation length and that the normal Binder parameter
Q2 shows large deviations at small lattice sizes. This is not
necessarily a disadvantage since this often leads to better
controlled fits. Before performing some fits, however, let us
emphasize that in case of the staggered model considered in
Ref. 23, the spin stiffness displayed a qualitatively different
convergence toward the infinite-volume limit because there
the correlation length 
y showed less finite-size effects. This
proves that �s is not always the best quantity.

Since all quantities give a rather consistent picture in their
scaling properties we can safely bracket the critical couplings
from the crossings using the largest available �L ,2L� pair.
This yields �c� �1.9070,1.9105� and �c� �1.821,1.834� for
the ladder and plaquette cases, respectively. It is tempting to
obtain a more precise estimate from fitting the crossing
points to an ansatz due to Binder55

�c�L,2L� = �c +
b

L1/�+� , �20�

which states that the crossings should normally converge
faster than L−1/�, and would indeed show no L dependence at
all if �=�, i.e., no correction. In this ansatz b is a constant
and we neglected subleading corrections from the “shift”
term �. This term can in principle be included,52 leading to
fits which are more difficult to perform. The smooth curves
in Fig. 4�a� for the ladder model correspond to fits for the
correlation length, the spin stiffness, and the Binder param-
eters Q1 and Q2, which yield �c=1.9097�3� �
y�, �c
=1.9092�6� ��s�, �c=1.9095�5� �Q1�, and �c=1.9093�3�
�Q2�. They are all in agreement within error bars. For the
plaquette model �Fig. 4�b�� we obtain in the same order �c
=1.8232�3�, �c=1.8228�4�, �c=1.8238�8�, and �c
=1.8229�4�, respectively. All fit results are summarized in
Table II, where we additionally give the fitted quantity 1 /�
+� and the quality of the fits through the chi-squared per
degree of freedom ��2 /dof�. Under the assumption that the
correlation length exponent ��0.7, we deduce that � lies
roughly in the interval �0.8,1.2� for the correlation length and
the Binder parameters. For the spin stiffness, interestingly, �
seems to be smaller. The stiffness thus appears to cross close
to the quantum critical point but has slow convergence to-
ward it. On the other hand, the spin stiffness could not be
well described by Eq. �20�. A similar effect will, in fact, be
seen in the analysis of Sec. III B.

We feel that the critical points obtained above give a fair
estimate as they agree within error bars. A posteriori, this
justifies the neglection of �. Finally, it should be clear that
by the same approach other estimates, such as � and g0, can
and have been bracketed aiding in the collapse analysis now
to come.

B. Critical point from data collapses

In Sec. III A, first estimates of the critical points were
obtained. Next, our goal is to cross-check and possibly im-
prove the accuracy by analyzing the data for the full set of �
values around the crossing points including all lattice sizes in
Table I. We will therefore now elaborate on the data collapse
procedure to the scaling ansatz of Eq. �15�, knowing that we

TABLE II. Estimates for the critical point derived from Eq. �20�
for the ladder �top group� and plaquette model �bottom group�.

Quantity �c 1 /�+� �2 /dof


y 1.9097�3� 2.6�1� 0.85

�s 1.9092�6� 1.7�2� 1.7

Q1 1.9095�5� 2.3�1� 1.2

Q2 1.9093�3� 2.55�8� 0.64


 1.8232�3� 2.6�1� 0.24

�s 1.8228�4� 1.8�1� 0.14

Q1 1.8238�8� 2.2�1� 0.82

Q2 1.8229�4� 2.6�1� 0.72

Q2

Q1

ρs

ξy

1/L

α

0.120.100.080.060.040.02

1.93

1.92

1.91

1.90

1.89

1.88

1.87

1.86
Q2

Q1

ρs

ξ

1/L

α

0.120.100.080.060.040.02

1.84

1.82

1.80

1.78

1.76

1.74

(b)(a)

FIG. 4. �Color online� Crossing points from data at L and 2L of the four quantities �sL, 
 /L, Q1, and Q2 versus the inverse lattice size.
At L=� all curves should meet and define the quantum critical point �c. �a� Analysis for the ladder model. �b� Same for the plaquette model.
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have to include subleading correction terms. In this process
we will leave all parameters free since we want to avoid
preoccupation about the universality class. Of course we
keep in mind the bracketing of some important quantities in
Sec. III A. Fitting is done using Eq. �17� or �19�. The two
approaches have been compared and we could not detect a
noticeable difference in the outcome. We hence use the less
time consuming approach according to Eq. �17� for which a
fourth-order polynomial for gO�x� is employed.

Due to potential problems with multidimensional fitting,
the analysis is repeated for at least two different scenarios. In
a first case, we ignore the subleading shift corrections, i.e.,
we set �=� �or d=0� to obtain a first idea of the critical
coupling, the correlation length exponent �, and other param-
eters. We will see that apart from a few exceptions, this
approach actually describes our data well enough. Next we
repeat the collapse taking into account possible shift correc-
tions, described by a finite �. All fits are repeated multiple
times including random noise on the starting parameters as
well as on the raw data. In the latter case, the noise is taken
to be normal distributed and within the Jackknife56 errors �
of the original data points. We typically perform 1000 fits for
each observable. All quoted error bars are then understood as
being the error bars from this bootstrap56 procedure. Figure
5�a� outlines this procedure and shows that the collapse is
well behaved. Random starting values converge to a narrow
collapse region. Figures 5�b� and 5�c� display histograms of
the final critical couplings obtained from the bootstrap pro-
cedure for the ladder and plaquette model, respectively. It is
seen that the results are consistent as they more or less over-
lap, yet we note a systematic effect as the Binder parameter

tends to give smaller estimates in comparison to the correla-
tion length and the spin stiffness. This is also in accordance
with the data on the full bilayer of Ref. 14. Table III sum-
marizes concrete results for the different models and observ-
ables. The best results for �c are obtained from the spin

TABLE III. Tabulated results for the critical coupling ratio �c,
the exponent �, and the factor g0 from the collapse procedure for
both the ladder �upper group� and the plaquette model �lower
group�. In some cases, results from two fits, with and without a �
term are given.

Restriction �c � g0

Q2 d=0 1.9094�3� 0.717�10� 2.32�1�
Q1 d=0 1.9096�4� 0.72�1� 1.451�8�

No 1.9094�3� 0.72�1� 1.449�3�
�sL No 1.90974�15� 0.705�7� 1.155�10�

y /L d=0 1.9098�4� 0.715�10� 0.62�1�

Q2 d=0 1.8228�4� 0.716�6� 2.313�6�
No 1.8227�4� 0.72�1� 2.311�5�

Q1 d=0 1.8238�6� 0.72�1� 1.453�2�
No 1.8228�6� 0.72�1� 1.447�4�

�sL d=0 1.8230�3� 0.67�1� 1.28�3�
No 1.8230�2� 0.707�6� 1.27�2�


 /L d=0 1.8232�2� 0.709�6� 0.706�5�
No 1.8231�2� 0.713�6� 0.70�1�
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α
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FIG. 5. �Color online� �a� Visualization of the collapsing analysis. The �red� crosses ��� signify the starting values and the dense �blue�
points �+� the final values of ��c ,�� of the procedure for the spin stiffness in case of the plaquette model. Histograms of the final value for
�c for several observables for �b� the ladder model, and �c� the plaquette model.
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stiffness which usually interpolates between values from the
correlation length and Q2.

Second, we could not detect a noticeable difference in the
results if we include a � degree of freedom. An exception to
this observation is the spin stiffness, which showed con-
trolled fits only in presence of � �which probably acts as a
kind of stabilizer�. This fact agrees with the observation
made during the analysis of the crossing points above but is
presently not well understood. The results for the exponent �
are consistent with O�3� universality. Finally, typical values
for � are in the range of �� �0.8,1.3�, consistent with Sec.
III A. In case of the spin stiffness, we obtain ��1.4 and
� /��2.5. Using these results, concrete data collapses of the
original data are given in Fig. 6 which display a very good
collapse quality.

In principle, one would need to perform additional inves-
tigations on the influence of size of the collapsed regime x
�see Eq. �19��. We have done that partly, but do not attempt a
detailed extrapolation as we will extract the actual critical
exponents by a different method. In any case, we believe that
our estimates for �c are correct beyond doubt as they are
consistently obtained from three-independent methods
�crossing analysis, collapse to Eq. �15�, and collapse to Eq.
�16��. This also justifies the use of the approximations which
are present in the finite-size scaling ansatz.

We now state the main result of this section in giving our
final estimates for the critical couplings. Since no details
about systematic errors �e.g., from undescribed correction
effects etc.� are known, a plain average of the critical cou-
pling estimates from Q2, �s, and 
y is probably the best
choice �and turns out to be the same as a weighted average�.
This way, our final estimate is �c=1.9096�2� and
�c=1.8230�2� for the ladder and plaquette models, respec-
tively. In case of the ladder model, this result is in slight
disagreement with the previous value of 1.9107�2� in Ref.
20.

Before we go on, it is interesting to observe from the
quantities g0 listed in Table III that both the Binder param-
eters at the crossing point seem to be consistent within error
bars among the two models, whereas the spin stiffness and
the correlation length clearly do not possess this property but
the reader should keep in mind that 
y and 
 are slightly
different quantities.

IV. SCALING AT CRITICALITY

Having determined estimates for the critical couplings, we
now turn to an investigation of the critical exponents. To this
end, we make use of standard methods of Monte Carlo data
analysis. Our reason to decouple this investigation from the
collapse analysis is to get independent and unbiased esti-
mates. A fit at a predetermined critical point, second, has less
degrees of freedom and is hence easier to control.

Analysis of the exponents is performed using standard
relations and definitions. An established method to obtain the
correlation length exponent � is via the slope sQ2

=dQ2 /d� of
the Binder parameter evaluated at the critical point. Using
Eq. �13�, we arrive at

sQ2
� L1/�. �21�

Other exponents, in particular, � and � are calculated from
the order parameter and the structure factor at criticality as

�	ms
z	� � L−�/�, S��,�� � L1−�, �22�

where we assume Lorentz invariance, i.e., z=1 in S�� ,��
�L2−z−�.

In order to use Eqs. �21� and �22� we need data at the
quantum critical point. This can in principle be achieved by
performing new simulations. Since we have rather good data
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FIG. 6. �Color online� Data collapses for the ladder and
plaquette �wider range� model displaying �a� the Binder ratio Q2

�where the collapse for the ladder model was shifted upward by
0.05 for better visibility�, �b� the correlation length 
y, respectively,

, and �c� the spin stiffness �s. Apart from the special case of the
spin stiffness, collapses are shown without the � correction term.
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in the vicinity of �c already, we instead choose to compute
sQ2

, ms
z, and S�� ,�� from polynomial interpolation or multi-

histogram reweighting as employed in Sec. III. We have
checked the consistency of the two approaches and use the
first method from here on. Again, a bootstrap with 1000
samples is performed on top of this interpolation, varying the
raw input data within the uncertainties. Figure 7 summarizes
and displays the critical data so obtained. All plots are in a
ln–ln style vs the lattice size L. It is evident that straight lines
represent the data rather well. To make this statement more
quantitative we now perform and present detailed fits and
their results in Table IV. For each quantity, three fits are
performed corresponding to the best estimate of �c, as well
as its lower and upper bounds from the uncertainty. In case

of the ladder model, we also try a further fit at the previous
estimate of Ref. 20. Several observations can be made re-
garding our results. First, the exponent � obtained from the
slope of the Binder parameter is rather insensitive to the
variation in �c. Medium to good quality fits can be per-
formed for lattice sizes L�12 for both models. All results
for � are consistent with the best known value 0.7112�5� for
the 3D O�3� universality class.57 Our estimate for � as in
Table IV improves the accuracy compared to Ref. 20 by 1
order of magnitude. However, we do not quite reach the level
presented for the bilayer models.14 This could be related to
the more complicated nature of the phase transition in planar
models, where in-plane symmetries are broken.

In case of the exponent � /�, good fits to Eq. �22� could be
performed for L�16 resulting in almost perfect agreement
with the reference value of � /�=0.5188�3�, which we com-
puted from Ref. 57. Note that in case of the ladder model,
however, the �2 /dof increases by 1 order of magnitude ac-
companied by an increase in the value of � /� when perform-
ing the fit at the previous estimate for �c. This indicates that
the result of this paper indeed captures the critical point in
the ladder model more accurately. The same observation is
true for the exponent �. All results for this exponent are
quoted for lattice sizes L�20, indicating that this quantity is
harder to estimate. Yet, our results are still consistent or close
to the reference value. A natural check on the consistency of
our results is a test of the �hyper�scaling relation 2� /�= �d
+z−2+��, which seems to be satisfied for nearly all cases,
but it is also clear that � and � are probably strongly corre-
lated as they derive from almost the same quantity.

Finally, the interested reader is referred to Ref. 23 for a
slight extension of the current scaling analysis. In that refer-
ence, a further comparison regarding the Binder parameter at

TABLE IV. Fit results for the critical exponents �, � /�, and �.
We summarize results including a variation in the critical point
within its error bar. For the ladder model �top group of values� fit
results and quality of fits are also given at the previous best estimate
of �c. The bottom group are results for the plaquette model. Num-
bers in �¯� brackets denote the �2 /dof. For comparison relevant
reference values for the 3D O�3� universality class are given in the
last line.

�c � a � /� b � c

1.9096−� 0.712�4��1.8� 0.516�2��0.5� 0.026�2��0.2�
1.9096 0.711�4��1.8� 0.518�2��1.1� 0.029�5��0.8�
1.9096+� 0.710�4��1.8� 0.519�3��2.5� 0.032�7��1.4�
1.9107d 0.709�3��1.7� 0.525�8��15.3� 0.051�10��12�

1.8230−� 0.708�4��0.99� 0.515�2��0.84� 0.025�4��0.15�
1.8230 0.706�4��1.04� 0.516�2��0.40� 0.028�3��0.31�
1.8230+� 0.706�4��1.10� 0.517�2��1.6� 0.031�5��0.80�

Ref. 57 0.7112�5� 0.5188�3� 0.0375�5�
aL�12.
bL�16.
cL�20.
dPrevious best estimate of Ref. 20.
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FIG. 7. �Color online� Finite-size scaling using �a� the slope sQ2
of the Binder parameter, �b� the staggered magnetization, and �c�
the staggered structure factor S�� ,��. These quantities are com-
puted at the critical points determined in Sec. III.
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the critical point in different planar and bilayer Heisenberg
models is presented.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have considered two particular geomet-
ric arrangements of competing interactions in 2D planar
quantum Heisenberg models complementing work we have
started in Ref. 23. From detailed QMC simulations and a
finite-size scaling study, this work provides a first high-
precision value for the critical point in the plaquettized
Heisenberg model and improves the value for the ladder
model. In both cases, the use of correction terms and a com-
bined analysis of different quantities is essential. For both
models we derive the full set of critical exponents and im-
prove their accuracy by about 1 order of magnitude �from
�=0.71�3� to 0.711�4�� for the ladder model. These values
are in excellent agreement with the classical 3D O�3� univer-
sality class.57,58 As outlined above, the new estimates will be
useful and necessary in connection with the recent fascinat-

ing studies on impurity based questions. In this regard, an
extension from bilayer to planar models has yet to be done.

Note added. Recently, a report by Albuquerque et al.59

appeared, which also presents simulations on the
plaquettized Heisenberg model. Since their motivation is
mainly oriented toward showing the applicability of the con-
tractor renormalization method to quantum spin systems, less
emphasis is spent on the analysis of the critical point in
detail.
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